Indonesia National Science Olympiad (OSN) 2023 - Math

Soal Matematika OSN 2023


Day 1 
29 August 2023

1

An acute triangle  $ABC$  has  $BC$  as its longest side. Points  $D,E$  respectively lie on  $AC,AB$  such that  $BA = BD$  and  $CA = CE$ . The point  $A'$  is the reflection of  $A$  against line  $BC$ . Prove that the circumcircles of  $ABC$  and  $A'DE$  have the same radii.

2

Determine all functions  $f : \mathbb{R} \to \mathbb{R}$  such that the following equation holds for every real  $x,y$ :
\[ f(f(x) + y) = \lfloor x + f(f(y)) \rfloor. \] Note:  $\lfloor x \rfloor$  denotes the greatest integer not greater than  $x$ .

3

A natural number  $n$  is written on a board. On every step, Neneng and Asep changes the number on the board with the following rule: Suppose the number on the board is  $X$ . Initially, Neneng chooses the sign up or down. Then, Asep will pick a positive divisor  $d$  of  $X$ , and replace  $X$  with  $X+d$  if Neneng chose the sign up or  $X-d$  if Neneng chose down. This procedure is then repeated. Asep wins if the number on the board is a nonzero perfect square, and loses if at any point he writes zero.

Prove that if  $n \geq 14$ , Asep can win in at most  $(n-5)/4$  steps.

4

Determine whether or not there exists a natural number  $N$  which satisfies the following three criteria:
1.  $N$  is divisible by  $2^{2023}$ , but not by  $2^{2024}$ ,
2.  $N$  only has three different digits, and none of them are zero,
3. Exactly 99.9% of the digits of  $N$  are odd.

Day 2
30 August 2023

5

Let  $a$  and  $b$  be positive integers such that  $\text{gcd}(a, b) + \text{lcm}(a, b)$  is a multiple of  $a+1$ . If  $b \le a$ , show that  $b$  is a perfect square.

6

Determine the number of permutations  $a_1, a_2, \dots, a_n$  of  $1, 2, \dots, n$  such that for every positive integer  $k$  with  $1 \le k \le n$ , there exists an integer  $r$  with  $0 \le r \le n - k$  which satisfies
\[ 1 + 2 + \dots + k = a_{r+1} + a_{r+2} + \dots + a_{r+k}. \]

7

Given a triangle  $ABC$  with  $\angle ACB = 90^{\circ}$ . Let  $\omega$  be the circumcircle of triangle  $ABC$ . The tangents of  $\omega$  at  $B$  and  $C$  intersect at  $P$ . Let  $M$  be the midpoint of  $PB$ . Line  $CM$  intersects  $\omega$  at  $N$  and line  $PN$  intersects  $AB$  at  $E$ . Point  $D$  is on  $CM$  such that  $ED \parallel BM$ . Show that the circumcircle of  $CDE$  is tangent to  $\omega$ .

8

Let  $a, b, c$  be three distinct positive integers. Define  $S(a, b, c)$  as the set of all rational roots of  $px^2 + qx + r = 0$  for every permutation  $(p, q, r)$  of  $(a, b, c)$ . For example,  $S(1, 2, 3) = \{ -1, -2, -1/2 \}$  because the equation  $x^2+3x+2$  has roots  $-1$  and  $-2$ , the equation  $2x^2+3x+1=0$  has roots  $-1$  and  $-1/2$ , and for all the other permutations of  $(1, 2, 3)$ , the quadratic equations formed don't have any rational roots.

Determine the maximum number of elements in  $S(a, b, c)$ .


source : artofproblemsolving.com

Komentar